
Quad MECL-to-TTL Translator

The MC10H125 is a quad translator for interfacing data and control signals between the MECL section and saturated logic section of digital systems. The 10H part is a functional/pinout duplication of the standard MECL 10K family part, with 100% improvement in propagation delay, and no increase in power–supply current.

Outputs of unused translators will go to low state when their inputs are left open.

- Propagation Delay, 2.5 ns Typical
- Voltage Compensated
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- MECL 10K-Compatible

LOGIC DIAGRAM

 $^*V_{BB}$ to be used to supply bias to the MC10H125 only and bypassed (when used) with 0.01 μF to 0.1 μF capacitor to ground (0 V). V_{BB} can source < 1.0 mA.

DIP PIN ASSIGNMENT

Pin assignment is for Dual–in–Line Package.
For PLCC pin assignment, see the Pin Conversion Tables on page 18 of the ON Semiconductor MECL Data Book (DL122/D).

ON Semiconductor

http://onsemi.com

MARKING DIAGRAMS

CDIP-16 L SUFFIX CASE 620 MC10H125L AWLYYWW

PDIP-16 P SUFFIX CASE 648

PLCC-20 FN SUFFIX CASE 775

A = Assembly Location

WL = Wafer Lot YY = Year WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping		
MC10H125L	CDIP-16	25 Units/Rail		
MC10H125P	PDIP-16	25 Units/Rail		
MC10H125FN	PLCC-20	46 Units/Rail		

MAXIMUM RATINGS

Symbol	Characteristic	Rating	Unit
VEE	Power Supply (V _{CC} = 5.0 V)	-8.0 to 0	Vdc
VCC	Power Supply (V _{EE} = -5.2 V)	0 to +7.0	Vdc
VI	Input Voltage (V _{CC} = 5.0 V)	0 to VEE	Vdc
TA	Operating Temperature Range	0 to +75	°C
T _{stg}	Storage Temperature Range — Plastic — Ceramic	−55 to +150 −55 to +165	°C °C

ELECTRICAL CHARACTERISTICS ($V_{EE} = -5.2 \text{ V} \pm 5\%$; $V_{CC} = 5.0 \text{ V} \pm 5.0 \%$) (See Note)

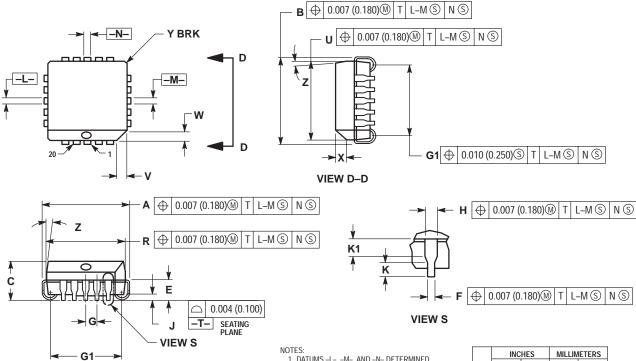
		()°	25°		75°		
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit
ΙE	IE Negative Power Supply Drain Current		44	_	40	_	44	mA
ICCH	Positive Power Supply	_	63	_	63	_	63	mA
ICCL	Drain Current	_	40	_	40	_	40	mA
linH	Input Current	_	225	_	145	_	145	μΑ
ICBO	Input Leakage Current		1.5	_	1.0	<u> </u>	1.0	μΑ
VOH	High Output Voltage I _{OH} = −1.0 mA	2.5	_	2.5	_	2.5	_	Vdc
VOL	Low Output Voltage IOL = +20 mA	_	0.5	_	0.5	_	0.5	Vdc
VIH	High Input Voltage(1)	-1.17	-0.84	-1.13	-0.81	-1.07	-0.735	Vdc
VIL	Low Input Voltage(1)	-1.95	-1.48	-1.95	-1.48	-1.95	-1.45	Vdc
los	Short Circuit Current	60	150	60	150	50	150	mA
V _{BB}	Reference Voltage	-1.38	-1.27	-1.35	-1.25	-1.31	-1.19	Vdc
VCMR	Common Mode Range (3)	_	_	-2.85 t	to +0.3			V
			Typical					
V _{PP}	Input Sensitivity (4)		150				mV	

AC PARAMETERS

tpd	Propagation Delay	0.8	3.3	0.85	3.35	0.9	3.4	ns
t _r	Rise Time(5)	0.3	1.2	0.3	1.2	0.3	1.2	ns
t _f	Fall Time(5)	0.3	1.2	0.3	1.2	0.3	1.2	ns

- 1. When VBB is used as the reference voltage.
- Each MECL 10H series circuit has been designed to meet the specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained.
- 3. Differential input not to exceed 1.0 Vdc.
- 4. $150 \, \text{mV}_{\text{p-p}}$ differential input required to obtain full logic swing on output.
- 5. 1.0 V to 2.0 V w/25 pF into 500 Ω .

APPLICATION INFORMATION

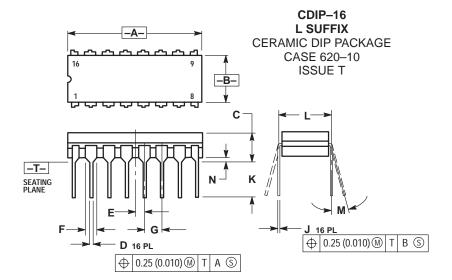

The MC10H125 incorporates differential inputs and Schottky TTL "totem pole" outputs. Differential inputs allow for use as an inverting/non–inverting translator or as a differential line receiver. The VBB reference voltage is available on Pin 1 for use in single–ended input biasing. The outputs of the MC10H125 go to a low–logic level whenever the inputs are left floating, and a high–logic output level is achieved with a minimum input level of 150 mVp–p.

An advantage of this device is that MECL–level information can be received, via balanced twisted pair lines, in the TTL equipment. This isolates the MECL–logic from the noisy TTL environment. Power supply requirements are ground, +5.0 volts and -5.2 volts.

PACKAGE DIMENSIONS

PLCC-20 **FN SUFFIX**

PLASTIC PLCC PACKAGE CASE 775-02 ISSUE C

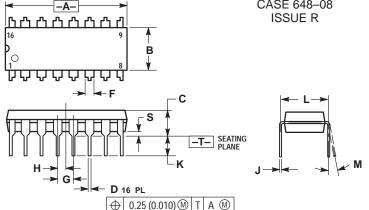

NOTES:

⊕ 0.010 (0.250)⑤ T L-M ⑤ N ⑤

- DATUMS -L-, -M-, AND -N- DETERMINED
 WHERE TOP OF LEAD SHOULDER EXITS PLASTIC WILLY LOVE LEAD STOUDER EXTENSIVE SOLUTION TO BE MEASURED AT DATUM -T-, SEATING PLANE.

 3. DIMENSIONS R AND U DO NOT INCLUDE MOLD
- FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250)
- PER SIDE.
 4. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982. 5. CONTROLLING DIMENSION: INCH.
- 6. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.
- DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.385	0.395	9.78	10.03
В	0.385	0.395	9.78	10.03
С	0.165	0.180	4.20	4.57
Е	0.090	0.110	2.29	2.79
F	0.013	0.019	0.33	0.48
G	0.050	BSC	1.27	BSC
Н	0.026	0.032	0.66	0.81
J	0.020		0.51	
K	0.025		0.64	
R	0.350	0.356	8.89	9.04
U	0.350	0.356	8.89	9.04
V	0.042	0.048	1.07	1.21
W	0.042	0.048	1.07	1.21
Χ	0.042	0.056	1.07	1.42
Υ		0.020		0.50
Z	2°	10 °	2 °	10 °
G1	0.310	0.330	7.88	8.38
K1	0.040		1.02	



NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.
 DIMENSION L TO CENTER OF LEAD WHEN
- FORMED PARALLEL.
 DIMENSION F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.750	0.785	19.05	19.93	
В	0.240	0.295	6.10	7.49	
С		0.200		5.08	
D	0.015	0.020	0.39	0.50	
Ε	0.050	BSC	1.27	BSC	
F	0.055	0.065	1.40	1.65	
G	0.100	BSC	2.54 BSC		
Н	0.008	0.015	0.21	0.38	
K	0.125	0.170	3.18	4.31	
L	0.300	BSC	7.62	BSC	
M	0 °	15°	0 °	15°	
N	0.020	0.040	0.51	1.01	

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982. CONTROLLING DIMENSION: INCH.
- DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- DIMENSION B DOES NOT INCLUDE MOLD FLASH.
- ROUNDED CORNERS OPTIONAL

	INC	HES	MILLIN	IETERS	
DIM	MIN MAX		MIN	MAX	
Α	0.740	0.770	18.80	19.55	
В	0.250	0.270	6.35	6.85	
С	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100 BSC		2.54 BSC		
Н	0.050	BSC	1.27 BSC		
J	0.008	0.015	0.21	0.38	
K	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
M	0°	10°	0 °	10 °	
S	0.020	0.040	0.51	1.01	

ON Semiconductor and War are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

North America Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163. Denver. Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303-308-7140 (M-F 2:30pm to 5:00pm Munich Time)

Email: ONlit-german@hibbertco.com

Phone: (+1) 303-308-7141 (M-F 2:30pm to 5:00pm Toulouse Time)

Email: ONlit-french@hibbertco.com

Phone: (+1) 303-308-7142 (M-F 1:30pm to 5:00pm UK Time)

Email: ONlit@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support

303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time) Phone: Toll Free from Hong Kong 800-4422-3781

Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-8549

Phone: 81-3-5740-2745 Email: r14525@onsemi.com

Fax Response Line: 303-675-2167

800-344-3810 Toll Free USA/Canada

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.